HYPOLIPIDAEMIC DRUGS

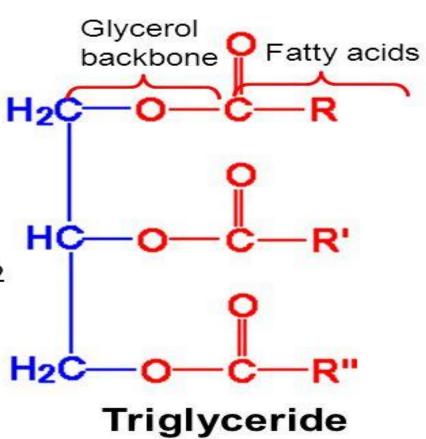
Dr Mallikarjuna Rao I Assistant Professor

HYPOLIPIDAEMIC DRUGS

- These are drugs which lower the levels of lipids and lipoproteins in blood.
- They have potential to prevent cardiovascular disease by retarding the accelerated atherosclerosis in hyperlipidaemic individuals.

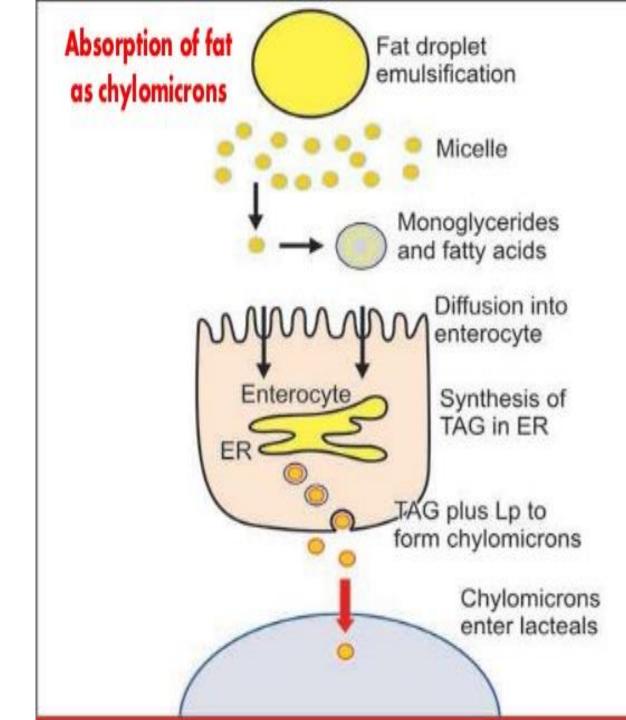
Fattyacids:

- Saturated fatty acids.
- Monounsaturated fatty acids(MUFAs).
- Polyunsaturated fatty acids (PUFAs).

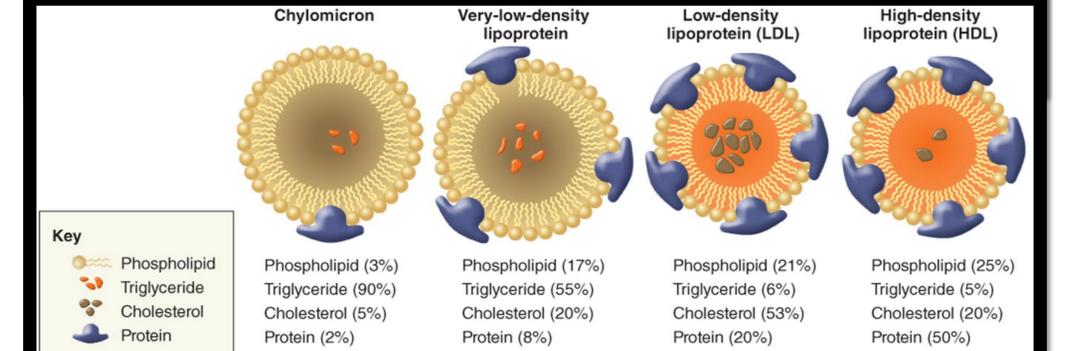

(a) Saturated

(b) Unsaturated

Lipids: are esters of fatty acids


Classification of lipids (structure)

- I) Simple lipids
 - Mono, Di, and Triacylglycerols
 - Account for 98 % lipids in foods
 - Waxes
- 2) Compound lipids some polarity
 - Phospholipids
 - Glycolipids
- 3) Derived lipids often hydrolyzed I&2
 - Free fatty acids
 - Sterol esters
 - Tocopherol (Vit-E)
 - β-carotene



LIPID TRANSPORT

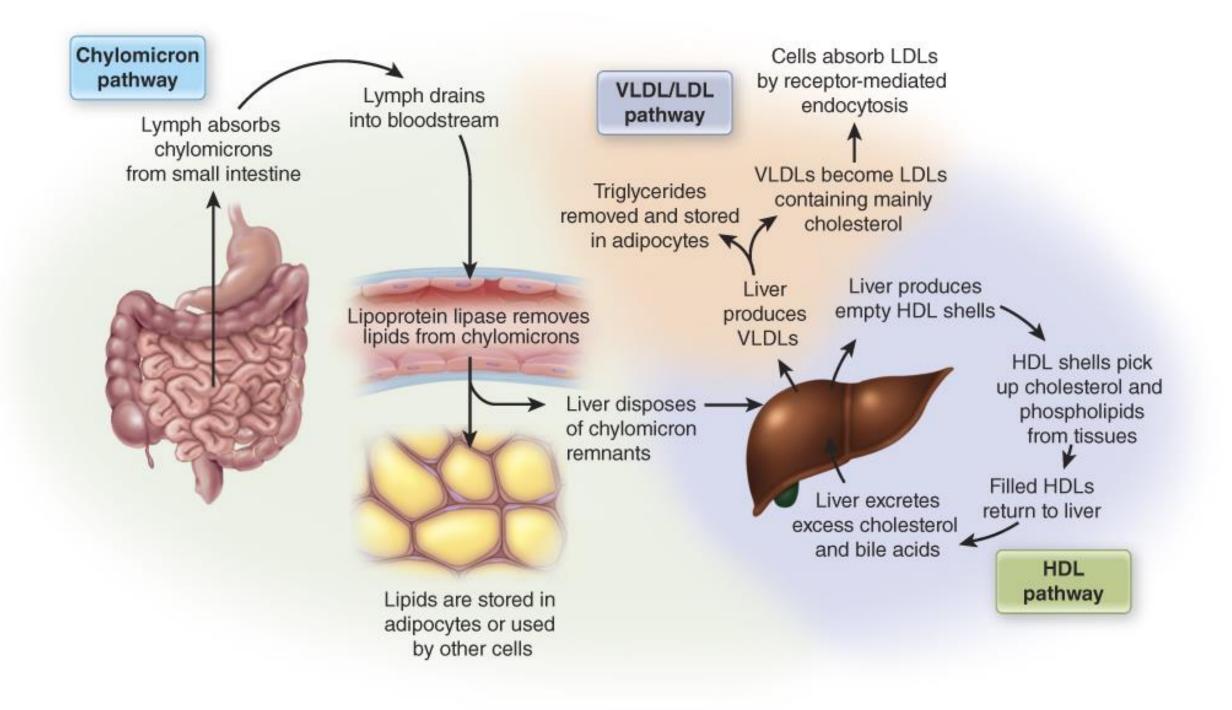

- ☐ Most of the fat in the human diet is in the form of triacylglycerol (TAG), which consists of three fatty acids linked to glycerol.
- □ Chylomicrons
 are lipoproteins, special
 particles that are designed for
 the transport of lipids in the
 circulation.
- ☐ Chylomicrons deliver absorbed TAG to the body's cell

	TABLE 45.1		Characteristics and function of plasma lipoproteins			
		Lipoprotein class	Diameter (nm)	Lipid contained	Source of lipid	Function
Ī	1.	Chy.	100–500	TG >> CHE	Diet	Dietary TG transport
١	2.	Chy. rem.	30–50	CHE >> TG	Diet, Chy.	Dietary CH transport
١	3.	VLDL	40–80	TG >> CHE	Liver	Endogenous TG transport
	4.	IDL	30–35	CHE ≥ TG	VLDL	Transport CHE & TG to liver, source of LDL
١	5.	LDL	20–25	CHE	IDL	Transport CH to tissues and liver
	6.	HDL	5–10	Phospholipid, CHE	Tissues, cell memb.	Removal of CH from tissues

CHOLESTEROL

- Critical substrate for the body:
 - Fundamental building block of steroid hormones
 - Essential for building cell membranes, the myelin sheath, and the brain
 - Core component of bile salts, which helps in digest dietary fats

CHOLESTROL

Good HDL

Bad TGL

Ugly LDL

Deadly Lp(a)

- Dyslipidaemias: means abnormalities of plasma lipid and lipoprotein concentration.
- Dyslipidaemias are the major cause of atherosclerosis and associated conditions.

- These may be...
 - Elevated total cholesterol levels.
 - Elevated LDL levels.
 - Elevated TGL levels.
 - Decreased HDL levels.

TABLE 45.4

Interpretation of plasma lipid levels*

	Plasma lipid levels (mg/dl)						
	Total CH	LDL-CH	HDL-CH	TGs			
Optimal/desirable	< 200	< 100 (< 70 for CA	> 40 (men) D pts) > 50 (wome	< 150 n)			
2. Borderline high	200-239	130–159		150-199			
3. High	≥ 240	160–189	> 60	200–499			
4. Very high	_	≥190	_	≥ 500			

^{*} Adopted from NCEP (2001)

Causes of Hyperlipidemia

- Lifestyle
- Diabetes Mellitus
- Kidney disease
- Pregnancy
- Hypothyroidism
- Genetic
- Alcohol
- Drugs- Thiazides, Cyclosporin,
 Glucocorticoids, Beta Blockers.

TABLE 45.2 Ty

Types of primary hyperlipoproteinaemias

Туре	Disorder	Cause	Occurrence	Elevated plasma	Plasma lipids	
				lipoprotein	CH	TG
I	Familial lipoprotein lipase deficiency	G	Very rare	Chylomicron	$\uparrow \uparrow$	↑↑↑
lla	Familial hypercholesterolaemia	G	Less common	LDL	$\uparrow\uparrow$	N
llb	Polygenic hypercholesterolaemia	MF	Commonest	LDL	1	N
Ш	Familial dysbetalipoproteinaemia	G	Rare	IDL, Chy. rem.	↑	1
IV	Hypertriglyceridaemia	MF, G	Common	VLDL	N	$\uparrow \uparrow$
٧	Familial combined hyperlipidaemia	G	Less common	VLDL, LDL	↑	1

CH—Cholesterol; TG—Triglycerides; G—Genetic; MF—Multifactorial; Chy. rem.—Chylomicron remnants; VLDL—Very low density lipoprotein; IDL—Intermediate density lipoprotein; LDL—Low density lipoprotein.

The genetic defect in some of the monogenic disorders is:

Type I : absence of lipoprotein lipase—TG in Chy cannot be utilized.

Type IIa : deficiency of LDL receptor—LDL and IDL are taken up very slowly by liver and tissues.

Type III : the apoprotein in IDL and Chy. rem. (apoE) is abnormal, these particles are cleared at a lower rate.

Type IV: this type of hypertriglyceridaemia is both multifactorial and monogenic, the former is more prevalent than the latter.

CLASSIFICATION

HMG-COA reductase inhibitors (Statins):

- Lovastatin. Simvastatin. Pravastatin.
- Atorvastatin. -Rosuvastatin.

<u>Activators of lipoprotein lipase(Fibrates)</u>:

- Bezafibrate. Ciprofibrate.
- - Fenofibrate. Gemfibrozil.

Bile Acid-Binding Resins: Cholestyramine, Colestipol

Inhibitors of lipolysis & TGL synthesis: Nicotinic acid (Niacin).

Inhibitors of Intestinal Absorption of Cholesterol: - Ezetimibe.

HMG-COA reductase inhibitors:

Lovastatin, Simvastatin, Pravastatin, Atorvastatin, Rosuvastatin

- These are most efficacious & best tolerated drugs.
- A dose dependent effect is seen with statins.
- Produce peak LDL-CH lowering after 1-2 weeks.

MOA: Inhibits the conversion of HMG-COA to Mevalonate.

 \downarrow


Decreased cholesterol biosynthesis.

 \downarrow

Compensatory increase in LDL receptors on liver cells.

Increased receptor mediated uptake & catabolism of IDL &LDL

Actions

- Also decrease 10-30 % TGL level.
- A rise in 5-15% HDL.
- Simultaneouse use of Resins/Nicotinic acid may boost the effect to 70%.
- Prolonged use may decrease the effect.

- Daily Dose: Lovastatin 40 mg.
 - Pravastatin 40 mg.
 - Simvastatin 20 mg.
 - Atorvastatin 10 mg.
 - Rosuvastatin 5 mg.
- Administered at HS for max. effect.
- Given orally.

Adverse effects of Statins

- Headache,
- Sleep disturbance,
- Raise serum transaminase,
- Muscle tenderness & rise in CPK levels.
- Myopathy (<1/1000) is the only serious A/E, it is more when given along with nicotinic acid / gemfibrozil/ CYP3A4 inhibitors e.g ketoconazole.
- Fenofibrate is safe for combining with statins.
- Statins should be avoided in pregnant women.

Uses Of Statins

- ✓ 1st choice in primary (↑LDL, TCH-IIa, IIb, V) & secondary hyper lipidaemias.
- ✓ It decreases CVS mortality by decreasing raised LDL level.
- ✓ Improved coronary compliance and atheromatous plague stabilization.
- ✓ Improvement in endothelial function & increased NO production.
- ✓ They are the 1st choice drugs for dyslipidaemia in diabetics.

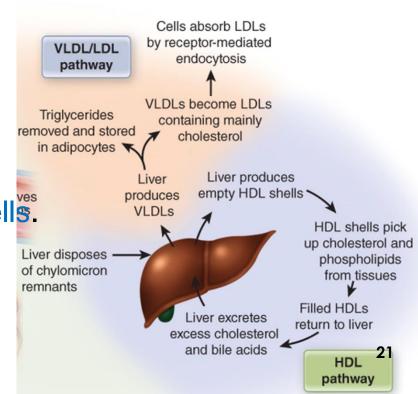
Pleotropic effects of Statins:

- □ ↓ in platelet aggression
- □ Improvement in endothelial function & ↑ in local NO production.
- \square \downarrow in macrophage infiltration into vessel wall.
- \square \downarrow in arterial muscle proliferation.
- □ Retardation of progression of the hypertrophy of vessel wall.
- $\square \downarrow LDL$ oxidation in the vessel wall.

FIBRATES: Activators of lipoprotein lipase:

Bezafibrate, Ciprofibrate, Fenofibrate. Gemfibrozil.

These are isobutyric acid derivatives.


MOA: Activation of paroxisome proliferator-activated receptor $\alpha(PPAR\alpha)$.

Enhanced lipoprotein lipase synthesis.

Degradation of VLDL & ↓ circulating TGL.

PPARα also increases LDL receptors on liver cells.

- Decreases TG synthesis in liver.
- Also decreases circulating FFA.

Gemfibrozil:

It is a fibric acid derivative.

Actions:

- Lowers plasma TG level.
- Decrease the level of clotting factor VII-phospholipid complex.
- Promotes fibrinolysis.

PK:

- Well absorbed orally.
- Metabolized by glucuronidation.
- Undergoes enterohepatic circulation.
- Excreted in urine.

USES: First line drug for patients with markedly raised TG levels, whether or not CH levels are also raised.

ADR:- Epigastic destress.

- Loose motions.
- Skin rashes, body ache, eosinophilia.
- Headache & blurred vision.
- Gemfibrozil+Statin→myopathy.

Uses:- DOC in Pt's with marked rise in TG levels.

- Episodes of acute pancreatitis are prevented.
- Most effective in type III hyperlipoproteinaemia.
- 1st line drug in type IV & type V disease.
- Used as adjuvant drug in type IIb patients.

Bezafibrate:

2nd generation fibric acid derivative & alterative to gemfibrozil in (type III, IV & V).

- Has greater LDL lowering action than gemfibrozil.
- A/E are less (G.I upset, rashes etc). Action of anticoagulant is increased.
- Combination with statin not found to increase risk of rhabdomyolysis.

Resins: Cholestyramine, colestipol

These are insoluble, nonabsorbable anion exchange resins.

MOA: Resins forms complex with neg.charged bile acids & bile salts in the small intestine.

This complex is non-absorbable & get excreted.

preventing the bile acid returning to the liver by enterohepatic circulation.

 \downarrow

Biosynthesis of bile acids from CH increases.

 \downarrow

Results in up-regulation of LDL receptors.

 \downarrow

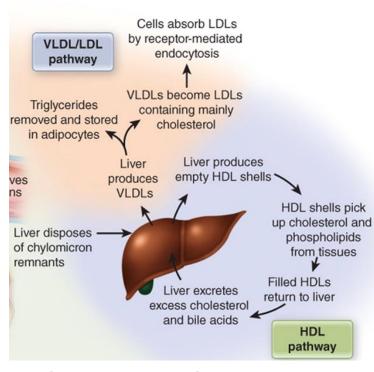
Fall in circulating levels of LDL.

- Actions: Resins cause an increase in TG levels.
 - A small rise in HDL-C (5%).
 - Lower LDL-C by 20-30%.

Uses:- DOC in type IIa.

- Pruritis.
- Digitalis toxicity.

ADR:- Constipation.


- GIT distress.

Drug Interactions:

- Fat soluble vitamins.
- Digoxin, tetracycline, statins, diuretics.

Lipolysis & TG synthesis inhibitors: NIACIN

- It is a B group vitamin.
- In higher doses reduces plasma lipids.
- Rapidly decreases TGs & VLDL.
- It is the most effective drug to raise HDL-CH.
- Reduces Lp(a) which is more atherogenic

MOA: It strongly **inhibits the lipolysis** in adipose tissues and increases **LIPOPROTEIN LIPASE** activity

reduces the levels of circulating FFAs.

 \downarrow

Decrease in liver TG synthesis→VLDL indirectly IDL and LDL.

Uses:

- Useful in type III, IV and V hypertriglyceridaemia
- To control pancreatils associated with hypertriglyceridaemia
- Useful in pt's at risk of CHD.

Dose: Start with 100 mg TDS, gradually increase to 2–4 g per day in divided doses. It should be taken just after food to minimize flushing and itching

ADR: large doses are poorly tolerated

- Cutaneouse flush & pruritis-first 14days, Rx-Aspirin
- GIT discomfort : Dyspepsia, nausea, vomiting, diarrhoea
- Dryness of skin, Hyperpigmentation

Long term effects:

- Cholestatis.
- Hyperglycaemia.
- Hyperuricaemia.
- Liver dysfunction and jaundice
- It is CI in pregnancy & in children.
 - Diabetes, Gout, Peptic ulcer.

Sterol absorption inhibitor: Ezetimibe

 MOA: It interferes with specific CH transport protein NPC1L1

reduces the intestinal absorption of CH.

LDL-CH level is lowered by 15-20%.

- It may be used alone in mild hypercholesterolemia.
- Used to supplement statins(synergestic)
- Adverse drug effects- GIT discomfort.
 - Reversible hepatic dysfunction
 - rarely Myositis

Fish oil derivatives (Omega-3 fatty acids)

- Contains poly unsaturated fatty acids (PUFA).
- Eicosa-pentanoic & docosa-hexanoic acids.

 Used for prophylaxis in high risk pt. of CAD with hyperlipidaemia.

Membrane stabilizing & antioxidant action.

Usually formulated with Vit-E.

Combination Drug Therapy.

- The combination of two lipid lowering drugs is very useful in the treatment of severe hyperlipoproteinemia.
- Commonly used drug combinations includes
 - Resins + fibrates.
 - Resins + niacin .
 - Resins + statins.
 - Resins + statins + niacin.
 - Statins + ezetimibe.
 - Niacin + statins.

SUMMARY GUIDELINES ON THE USE OF HYPOLIPIDAEWIC DRUGS:

- ✓ Prophylactic use of a statin in CAD/hypertensive patients even with average or lower than average CH levels decreases coronary and stroke events.
- ✓Standard practice: prescribe statin therapy after an acute coronary event irrespective of lipid levels.

Primary approach: Lifestyle modification, such as low fat, low cholesterol diet, limitation of saturated and trans-fats, regular exercise, body weight control, smoking cessation, restriction of alcohol

- All patients who are at risk of CAD or thrombotic stroke: low dose aspirin prophylaxis unless it is contraindicated.
- Prescribe hypolipidemic drugs depends
 not only on the LDL-CH level and the type
 of lipid abnormality, but also on associated
 CAD risk factor(s) or existing CAD or its

Risk factors for coronary artery disease*

- Men > 45 years, women > 55 years
- Family history of MI/sudden cardiac death before 55 year (men), 65 year (women) age in first degree relative
- Smoking
- Hypertension (BP > 140/90 or use of antihypertensive medication)
- Diabetes mellitus[£]
- Low HDL-CH (< 40 mg/dl in men, < 50 mg/dl in women)
- High LDL-CH (≥ 160 mg/dl) or total CH ≥ 240 mg/dl
- Obesity (BMI > 25 Kg/m²)† or waist > 40" (men), > 35" (women)
- * Adopted from the NCEP-ATP III (2001)
- [£] Diabetes is considered equivalent to existing CAD
- † Not included in NCEP guideline (2001)

- Current American (ACC/AHA -20 I 3)* and British (NICE-20 I4) guidelines recommend that
 - >all subjects who require LDL-CH lowering therapy should be treated with a statin.
- The current guidelines divide statin therapy into 3 categories, viz.
 - 'high intensity',
 - 'moderate intensity' and
 - > ' low intensity'

Table 46.6: Daily doses of statins for high, medium and low intensity statin therapy

Statin therapy	High intensity	/	Moderate in	tensity	Low intensity	у
Guideline source	ACC/AHA1	NICE	ACC/AHA	NICE	ACC/AHA	NICE
LDL-CH reduction	≥ 50%	>40%	30-50%	31-40%	<30%	20-30%
1. Atorvastatin	40-80 mg	20-80 mg	10-20 mg	10 mg	-	-
2. Rosuvastatin	20-40 mg	10-40 mg	5-10 mg	5 mg	-	-
3. Simvastatin	-	80 mg*	20-40 mg	20-40 mg	10 mg	10 mg
4. Pravastatin	-	-	40-80 mg	-	10-20 mg	10-40 mg
5. Lovastatin	-	-	40 mg	-	20 mg	-
6. Pitavastatin	-	-	2-4 mg	-	1 mg	-

^{*} Increased risk of myopathy; to be used only when benefits outweigh risks.

^{1.} ACC/AHA: American College of Cardiology/American Heart Association guidelines (2013).

^{2.} NICE: National Institute of Health Care Excellence (UK) guideline. cg181 (2014).

Indications for high intensity and moderate intensity statin therapy*

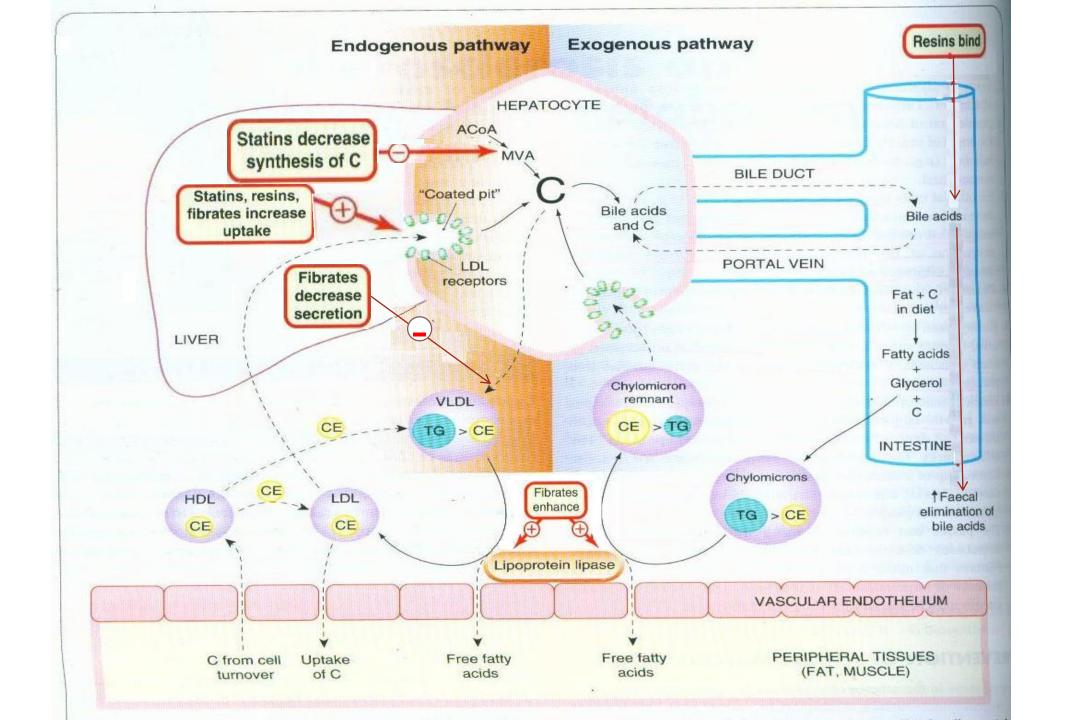
Statin benefit group

Clinical ASCVD present

- No clinical ASCVD, but plasma LDL-CH ≥ 190 mg/dL (primary hypercholesterolemia)
- Diabetics aged 40–75 yr with LDL-CH 70–189 mg/dL and no clinical ASCVD
- Non-diabetics aged 40–75 yr without clinical ASCVD, with LDL-CH 70–189 mg/dL and estimated 10 yr ASCVD risk ≥ 7.5%

Recommended treatment

- Age ≤ 75 yr: High intensity statin (moderate intensity statin if high intensity statin not tolerated or C/I)
- Age > 75 yr: Moderate intensity statin
- High intensity statin (moderate intensity statin if high intensity statin not tolerated or C/I)
- Moderate intensity statin or
- High intensity statin if estimated 10 yr ASCVD risk ≥ 7.5%
- Moderate-to-high intensity statin therapy


ASCVD—Atherosclerotic cardiovascular disease; C/I—contraindicated

^{*} Based on ACC/AHA guidelines 2013

- ➤In summary, current indications for statin therapy are:
 - ►I. All subjects with ASCVD irrespective of plasma CH level.
 - ≥2. All subjects with LDL-CH above 190 mg/dL.
 - >3. All diabetics aged 40 years or more.
 - ▶4. Subjects aged 40 years or more with estimated 10 yr ASCVD risk more than 7.5%, irrespective of plasma CH level.
- The NICE (2014) guidelines advise against routine addition of fibrates or nicotinic acid to a statin for preventing CVD. Extra vigilance is required to guard against risk of myopathy when niacin or fibrate is added to a statin.

Drug	MOA	Uses	Adverse effects
Statins	HMG CoA reductase Inhibition. Pleomorphic effects Of statins???	Hyperlipidemias-all types.	↑↑↑ liver enzymes. C/I-Pregnancy, lactation, Children.
Niacin	Lipolysis inhibition in adipose tissue.↓ FFA,↓TGL& ↓ LDL.↑ HDL.↑ tPA ↓ pl.fibrinogen. Reverse ET dysfn.	Most potent antihyperlipidemic drug to elevate HDL.FamilialHyperli pidemias.	Cutaneous flush,pruritus&warmt h.IGT.Liver toxicity,nausea,abdo minal pain.Gout.
Fibrates	PPAR agonists.†Genes coding expression of LPL.↓apo CII.†HDL by ↑ apo AI and apo AII.	Hyper TGL emias. Types III, IV & V.	CI-Severe liver,GB & renal disease.
Bile-acid binding resins	Bind bile acids(-vely) in SI. ††Excretion in feces.>>Cholesterol-bile acids. LDL-receptor upregulation.	Types IIa/ IIb Hyp.lip.Along with Niacin.	GI effects are more common
Ezetimibe T½ 22 hrs.	SI-absorption inhibitor. molecular target as the Niemann-Pick C1-like	Hypercholesterolemia	CI-Hepatic insufficiency.

THANK YOU

